Energy interactions in homogeneously sheared magnetohydrodynamic flows Diane Collard¹, Divya Sri Praturi², Sharath S. Girimaji² ¹Chemical Engineering, Kansas State University ²Aerospace Engineering, Texas A&M University 69th Annual meeting of American Physical Society, Division of Fluid Dynamics #### **Outline** - Motivation - Objectives - Approach - Simulation setup - Results - Conclusions #### Motivation - Plasma is ubiquitous constitutes ~99% of baryonic matter - Widely observed in nature and engineering - Magnetic field is generally known to stabilize instabilities - Kelvin-Helmholtz or Richtmeyer-Meskov instability Jets from young stars Photo credit: C. Burrows (ST ScI), J. Hester (ASU), J.Morse (ST ScI), NASA Active galactic nuclei of radio galaxy 3C31 Photo credit: NRAO/AUI 2006 Kelvin-Helmholtz instability in a coronal mass ejection Photo credit: NASA AIA/SDO #### **Objectives** - Investigate the evolution of velocity and magnetic fields as a function of - Magnetic field strength (B_0) - Perturbation wavevector orientation (β) - Investigate energy exchange between perturbation velocity and magnetic fields #### Theory Considering perturbations in shearnormal plane: $$\kappa_1(t) = \kappa_0 \cos \beta, \kappa_2(t) = -\kappa_0 \cos \beta St,$$ $$\kappa_3(t) = \kappa_0 \sin \beta$$ κ_0 is the initial wavevector magnitude Dimensionless quantities using reference distance, time, velocity: $$\kappa_{ref} = \kappa_0$$; $t_{ref} = \frac{1}{S}$; $u_{ref} = V_A = \frac{B_0}{\sqrt{\overline{\rho}\mu_0}}$ Dimensionless governing equations in spectral space: $$\frac{d\hat{u}_i^*}{d\tau} = \hat{u}_2^* \left(-\delta_{i1} + \frac{2\cos\beta\kappa_i^*}{1 + \cos^2\beta\tau^2} \right) + iR_A^* \hat{B}_i^*$$ $$\frac{d\hat{B}_i^*}{d\tau} = \hat{B}_2^* \delta_{i1} + iR_A^* \hat{u}_i^*$$ $$R_A^* = \frac{\kappa_0 V_A \cos\beta}{S} = R_A \cos\beta$$ Where, i = 1 - 3 **Problem Setup** #### Theory - \clubsuit The evolution of velocity and magnetic fields decided by R_A^* - R_A^* : Ratio of shear $\left(\tau_S = \frac{1}{S}\right)$ and magnetic time scales $\left(\tau_B = \frac{1}{\kappa_0 V_A \cos \beta}\right)$ - Magnetic frequency: $\frac{1}{\tau_B} \propto \cos \beta$ - For a given V_A , S, κ_0 : - Streamwise perturbations $(\beta = 0^{\circ})$: R_A^* is maximum - ightharpoonup Highest harmonic exchange between \hat{u}_i^* and \hat{B}_i^* \Rightarrow equi-partition between kinetic and magnetic energies can be observed - Spanwise perturbations $(\beta = 90^{\circ})$: $R_A^* = 0$ - \succ No exchange between \widehat{u}_i^* and \widehat{B}_i^* \Rightarrow no evolution of \widehat{B}_i^* - $\triangleright \hat{u}_i^*$ equations are pressure-released - Kinetic energy grows quadratically unaffected by magnetic field strength - Intermediate orientations ($\beta = 30^{\circ}, 60^{\circ}$): - Mixed behavior depending on the orientation #### Numerical Scheme • Magneto-Gas Kinetic Method^{1,2} (MGKM) solves fluid equations with the simplified Boltzmann equation and the magnetic field equations *separately*. ¹Xu, K., Journal of Computational Physics 171, 289-335 (2001) ²Araya, D.B. et al., ASME, Vol. 137, 081302-(1-11), Aug., 2015 #### Simulation setup - MHD homogeneous shear simulation conditions - Temperature = 300 K, Density = 1 kg/m³ - Reynolds number = 770 - Magnetic Reynolds Number = 195 - Gradient Mach number, $M_g = 0.03$ - Boundary conditions: - 1 and 3 planes: periodic boundaries - 2 plane: shear periodic boundary | Magnetic field strength (B_0) | $V_A =$ | $= \frac{B_0}{\sqrt{\mu_0 \rho}}$ | Perturbation orientation (β) | $R_A = \frac{V_A \kappa_0}{S}$ | $R_A^*(\beta)$
= 0°, 30°, 60°, 90°) | |---------------------------------|---------|-----------------------------------|------------------------------------|--------------------------------|--| | 0.0003 T | 0.26m/s | | 0°, 30°, 60°, 90° | 0.17 | 0.17, 0.14, 0.085,0 | | 0.003 T | 2.6m/s | | 0°, 30°, 60°, 90° | 1.7 | 1.7, 1.4, 0.85, 0 | | 0.03 T | 26m/s | | 0°, 30°, 60°, 90° | 17 | 17, 14, 8.5, 0 | | | | Simulation parameters | | | | ### Effect of magnetic field strength at $\beta=0^\circ$ Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0) Evolution of perturbation magnetic energy (b) with respect to initial kinetic energy (k_0) - \diamond As R_A increases, wave-like behavior increases - $R_A = 0.17$: - Kinetic energy monotonically decays to zero ⇒Transfer to mean kinetic energy via the action of pressure - Magnetic energy grows monotonically - $R_A = 1.7$: - Solution exhibits wave-like behavior and overshoots the initial kinetic energy ⇒Conversion to perturbation kinetic energy from mean energy - $R_A = 17$, solution oscillates and decays gradually ### Effect of magnetic field strength at $\beta = 90^{\circ}$ Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0) - \diamond Kinetic energy grows quadratically at all values of R_A - The evolution matches the pressure-released Burgers evolution given by Simone et al. $$\frac{k}{k_0}=1+\tau^2$$ ### Effect of magnetic field strength at $\beta = 30^{\circ}$ Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0) Evolution of perturbation magnetic energy (b) with respect to initial kinetic energy (k_0) - At all R_A , kinetic energy decreases initially, but increases at later times \Rightarrow spanwise behavior dominates at later times - * Magnetic energy evolution similar to $\beta=30^\circ$, except at lower magnitudes ### Effect of magnetic field strength at $\beta = 60^{\circ}$ Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0) Evolution of perturbation magnetic energy (b) with respect to initial kinetic energy (k_0) - At all R_A , kinetic energy exhibits similar growth; oscillations about $R_A = 0.17$ evolution decrease in magnitude - * Magnetic energy plots similar to $\beta=0^{\circ},30^{\circ}$; except at lower magnitude - Predominantly spanwise behavior ### The effect of orientation (β) $\beta = 0^{\circ}$ As β increases, the effect of magnetic field decreases $\beta = 30^{\circ}$ #### Harmonic energy exchanges - \diamond Kinetic and magnetic energies exhibit similar magnitudes at $\beta=0^\circ$ - Equi-partition potentials defined as: $$\Phi_b = \frac{b}{k+b}$$ $$\Phi_{b2} = \frac{b_2}{k_2 + b_2}$$ Where, k, k_2 are total, 2-component kinetic energies, and b, b_2 are total, 2-component magnetic energies - Oscillates about 0.5 with frequency of π/R_A - Equi-partition of kinetic and magnetic energies and their 2-component #### **Conclusions** - $R_A^* = \frac{V_A \kappa_0 \cos \beta}{S}$ characterizes the effect of magnetic field strength and wavevector orientation - \diamond As magnetic field strength increases, R_A^* increases : - Wave-like behavior results - \clubsuit As β increases from 0° to 90° , R_A^* decreases: - $\beta=0^\circ$: highest harmonic exchange, equi-partition at $R_A=1.7,17$ - $\beta = 90^{\circ}$: no exchange, pressure-released behavior at all magnetic field strengths - As β varies from 0° to 90°, the effect of magnetic field decreases ## Thank you! Questions?