

Energy interactions in homogeneously sheared magnetohydrodynamic flows

Diane Collard¹, Divya Sri Praturi², Sharath S. Girimaji²

¹Chemical Engineering, Kansas State University

²Aerospace Engineering, Texas A&M University

69th Annual meeting of American Physical Society, Division of Fluid Dynamics

Outline

- Motivation
- Objectives
- Approach
- Simulation setup
- Results
- Conclusions

Motivation

- Plasma is ubiquitous constitutes ~99% of baryonic matter
 - Widely observed in nature and engineering
- Magnetic field is generally known to stabilize instabilities
 - Kelvin-Helmholtz or Richtmeyer-Meskov instability

Jets from young stars Photo credit: C. Burrows (ST ScI), J. Hester (ASU), J.Morse (ST ScI), NASA

Active galactic nuclei of radio galaxy 3C31 Photo credit: NRAO/AUI 2006

Kelvin-Helmholtz instability in a coronal mass ejection
Photo credit: NASA AIA/SDO

Objectives

- Investigate the evolution of velocity and magnetic fields as a function of
 - Magnetic field strength (B_0)
 - Perturbation wavevector orientation (β)
- Investigate energy exchange between perturbation velocity and magnetic fields

Theory

Considering perturbations in shearnormal plane:

$$\kappa_1(t) = \kappa_0 \cos \beta, \kappa_2(t) = -\kappa_0 \cos \beta St,$$

$$\kappa_3(t) = \kappa_0 \sin \beta$$

 κ_0 is the initial wavevector magnitude

Dimensionless quantities using reference distance, time, velocity:

$$\kappa_{ref} = \kappa_0$$
; $t_{ref} = \frac{1}{S}$; $u_{ref} = V_A = \frac{B_0}{\sqrt{\overline{\rho}\mu_0}}$

Dimensionless governing equations in spectral space:

$$\frac{d\hat{u}_i^*}{d\tau} = \hat{u}_2^* \left(-\delta_{i1} + \frac{2\cos\beta\kappa_i^*}{1 + \cos^2\beta\tau^2} \right) + iR_A^* \hat{B}_i^*$$
$$\frac{d\hat{B}_i^*}{d\tau} = \hat{B}_2^* \delta_{i1} + iR_A^* \hat{u}_i^*$$
$$R_A^* = \frac{\kappa_0 V_A \cos\beta}{S} = R_A \cos\beta$$

Where, i = 1 - 3

Problem Setup

Theory

- \clubsuit The evolution of velocity and magnetic fields decided by R_A^*
 - R_A^* : Ratio of shear $\left(\tau_S = \frac{1}{S}\right)$ and magnetic time scales $\left(\tau_B = \frac{1}{\kappa_0 V_A \cos \beta}\right)$
 - Magnetic frequency: $\frac{1}{\tau_B} \propto \cos \beta$
- For a given V_A , S, κ_0 :
 - Streamwise perturbations $(\beta = 0^{\circ})$: R_A^* is maximum
 - ightharpoonup Highest harmonic exchange between \hat{u}_i^* and \hat{B}_i^* \Rightarrow equi-partition between kinetic and magnetic energies can be observed
 - Spanwise perturbations $(\beta = 90^{\circ})$: $R_A^* = 0$
 - \succ No exchange between \widehat{u}_i^* and \widehat{B}_i^* \Rightarrow no evolution of \widehat{B}_i^*
 - $\triangleright \hat{u}_i^*$ equations are pressure-released
 - Kinetic energy grows quadratically unaffected by magnetic field strength
 - Intermediate orientations ($\beta = 30^{\circ}, 60^{\circ}$):
 - Mixed behavior depending on the orientation

Numerical Scheme

• Magneto-Gas Kinetic Method^{1,2} (MGKM) solves fluid equations with the simplified Boltzmann equation and the magnetic field equations *separately*.

¹Xu, K., Journal of Computational Physics 171, 289-335 (2001)

²Araya, D.B. et al., ASME, Vol. 137, 081302-(1-11), Aug., 2015

Simulation setup

- MHD homogeneous shear simulation conditions
 - Temperature = 300 K, Density = 1 kg/m³
 - Reynolds number = 770
 - Magnetic Reynolds Number = 195
 - Gradient Mach number, $M_g = 0.03$
- Boundary conditions:
 - 1 and 3 planes: periodic boundaries
 - 2 plane: shear periodic boundary

Magnetic field strength (B_0)	$V_A =$	$= \frac{B_0}{\sqrt{\mu_0 \rho}}$	Perturbation orientation (β)	$R_A = \frac{V_A \kappa_0}{S}$	$R_A^*(\beta)$ = 0°, 30°, 60°, 90°)
0.0003 T	0.26m/s		0°, 30°, 60°, 90°	0.17	0.17, 0.14, 0.085,0
0.003 T	2.6m/s		0°, 30°, 60°, 90°	1.7	1.7, 1.4, 0.85, 0
0.03 T	26m/s		0°, 30°, 60°, 90°	17	17, 14, 8.5, 0
		Simulation parameters			

Effect of magnetic field strength at $\beta=0^\circ$

Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0)

Evolution of perturbation magnetic energy (b) with respect to initial kinetic energy (k_0)

- \diamond As R_A increases, wave-like behavior increases
- $R_A = 0.17$:
 - Kinetic energy monotonically decays to zero ⇒Transfer to mean kinetic energy via the action of pressure
 - Magnetic energy grows monotonically
- $R_A = 1.7$:
 - Solution exhibits wave-like behavior and overshoots the initial kinetic energy ⇒Conversion to perturbation kinetic energy from mean energy
- $R_A = 17$, solution oscillates and decays gradually

Effect of magnetic field strength at $\beta = 90^{\circ}$

Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0)

- \diamond Kinetic energy grows quadratically at all values of R_A
- The evolution matches the pressure-released Burgers evolution given by Simone et al.

$$\frac{k}{k_0}=1+\tau^2$$

Effect of magnetic field strength at $\beta = 30^{\circ}$

Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0)

Evolution of perturbation magnetic energy (b) with respect to initial kinetic energy (k_0)

- At all R_A , kinetic energy decreases initially, but increases at later times \Rightarrow spanwise behavior dominates at later times
- * Magnetic energy evolution similar to $\beta=30^\circ$, except at lower magnitudes

Effect of magnetic field strength at $\beta = 60^{\circ}$

Evolution of perturbation kinetic energy (k) with respect to initial kinetic energy (k_0)

Evolution of perturbation magnetic energy (b) with respect to initial kinetic energy (k_0)

- At all R_A , kinetic energy exhibits similar growth; oscillations about $R_A = 0.17$ evolution decrease in magnitude
- * Magnetic energy plots similar to $\beta=0^{\circ},30^{\circ}$; except at lower magnitude
- Predominantly spanwise behavior

The effect of orientation (β)

 $\beta = 0^{\circ}$

As β increases, the effect of magnetic field decreases

 $\beta = 30^{\circ}$

Harmonic energy exchanges

- \diamond Kinetic and magnetic energies exhibit similar magnitudes at $\beta=0^\circ$
- Equi-partition potentials defined as:

$$\Phi_b = \frac{b}{k+b}$$

$$\Phi_{b2} = \frac{b_2}{k_2 + b_2}$$

Where, k, k_2 are total, 2-component kinetic energies, and b, b_2 are total, 2-component magnetic energies

- Oscillates about 0.5 with frequency of π/R_A
 - Equi-partition of kinetic and magnetic energies and their 2-component

Conclusions

- $R_A^* = \frac{V_A \kappa_0 \cos \beta}{S}$ characterizes the effect of magnetic field strength and wavevector orientation
- \diamond As magnetic field strength increases, R_A^* increases :
 - Wave-like behavior results
- \clubsuit As β increases from 0° to 90° , R_A^* decreases:
 - $\beta=0^\circ$: highest harmonic exchange, equi-partition at $R_A=1.7,17$
 - $\beta = 90^{\circ}$: no exchange, pressure-released behavior at all magnetic field strengths
 - As β varies from 0° to 90°, the effect of magnetic field decreases

Thank you! Questions?