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*** Plasma is ubiquitous — constitutes ~99% of baryonic matter

= Widely observed in nature and engineering

** Magnetic field is generally known to stabilize instabilities

= Kelvin-Helmholtz or Richtmeyer-Meskov instability

Jets from young stars Active galactic nuclei of radio galaxy 3C31 Kelvin-Helmholtz instability in a coronal
Photo credit: C. Burrows (ST Scl), J. Hester (ASU), Photo credit: NRAO/AUI 2006 mass ejection
J.Morse (ST Scl), NASA Photo credit: NASA AIA/SDO



KANSAS STATE m

UNIVERSITY

O bj e Ct i Ve S College of Engineering AEROS;ACE

TEXAS A&M UNIVERSITY

*** Investigate the evolution of velocity and magnetic fields as a
function of
= Magnetic field strength (Bg)
= Perturbation wavevector orientation (f3)

** Investigate energy exchange between perturbation velocity and
magnetic fields
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* Considering perturbations in shearnormal
plane:
k,(t) = kycospB, k,(t) = —kycospf St,
K3 (t) = Kosinf
K, is the initial wavevector magnitude
* Dimensionless quantities using reference

distance, time, velocity:
1 B,

Kref = Ko; lref = G5 Uref = Vy =—=
J vV PHo
* Dimensionless governing equations in spectral
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“* The evolution of velocity and magnetic fields decided by R,

. _ 1 Ny 1
" Rj: Ratio of shear (TS = E) and magnetic time scales (TB alr— ﬁ)
oV A

: 1
= Magnetic frequency: — & cos 8
B

“* ForagivenVy, S, ky:
= Streamwise perturbations (f = 0°): R, is maximum

> Highest harmonic exchange between #i; and l?{" = equi-partition between kinetic
and magnetic energies can be observed

= Spanwise perturbations (§ = 90°):R; =0
> No exchange between i and B; = no evolution of B}
» U7 equations are pressure-released
» Kinetic energy grows quadratically unaffected by magnetic field strength

= Intermediate orientations (f = 30°,60°):

» Mixed behavior depending on the orientation
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 Magneto-Gas Kinetic Method?? (MGKM) solves fluid equations with the
simplified Boltzmann equation and the magnetic field equations separately.

p,pU E
N
2 reconstructed at the
interface \ 4
Calculation of fluid
fluxes using GKM
MHD source term v
calculation
l Fl - fulflpadg, dE - duldf
f(x' t, Uq, f)
aB - — — 1 — 1 t ,
_t: VX(UXB)—EV =;f g(x{,t’,ul,f)e_(t_t )/Tdtr
Update A . 0
X (/X B)+nj et ol —wt)
A Compute MHD source terms o - '
Spu »Sg g —equilibrium distribution function
fo — initial gas distribution function

IXu, K., Journal of Computational Physics 171, 289-335 (2001)
2Araya, D.B. et al., ASME, Vol. 137, 081302-(1-11), Aug., 2015
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oy “* MHD homogeneous shear simulation
T — conditions
7 = Temperature = 300 K, Density = 1 kg/m3
1 0x) = Reynolds number = 770
—'ﬂO—> / e = Magnetic Reynolds Number = 195
- i é' = Gradient Mach number, Mg = 0.03
| | ¢ Boundary conditions:
- _l = 1 and 3 planes: periodic boundaries
Z = 2 plane: shear periodic boundary
e .
L1
strength(B,) 47 /lop |orientation(B) | "4~ § |=0°30°60°90°
0.0003 T 0.26m/s 0°,30°60°90° 0.17 0.17,0.14, 0.085,0
0.003T 2.6m/s 0°,30°60°90° 1.7 1.7,1.4,0.85,0
0.03T 26m/s 0°,30°,60°,90° 17 17,14, 8.5, 0

Simulation parameters
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0 0.5 1 15 2 2 3
Evolution of perturbation kinetic energy (k) Evolution of perturbation magnetic energy (b)
with respect to initial kinetic energy (kg) with respect to initial kinetic energy (kg)

“* As R, increases, wave-like behavior increases
’:’ RA = 0.17:
= Kinetic energy monotonically decays to zero =Transfer to mean kinetic
energy via the action of pressure
= Magnetic energy grows monotonically
’:’ RA = 1.7:
= Solution exhibits wave-like behavior and overshoots the initial kinetic
energy =Conversion to perturbation kinetic energy from mean energy

“* R, = 17, solution oscillates and decays gradually
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Evolution of perturbation kinetic energy (k) with respect to
initial kinetic energy (kg)
¢ Kinetic energy grows quadratically at all values of R,
**» The evolution matches the pressure-released Burgers evolution
given by Simone et al.
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Evolution of perturbation kinetic energy (k) Evolution of perturbation magnetic energy (b)
with respect to initial kinetic energy (k) with respect to initial kinetic energy (k)

*» At all Ry, kinetic energy decreases initially, but increases at later
times = spanwise behavior dominates at later times

** Magnetic energy evolution similar to f = 30°, except at lower
magnitudes
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Evolution of perturbation kinetic energy (k) Evolution of perturbation magnetic energy (b)
with respect to initial kinetic energy (kg) with respect to initial kinetic energy (kg)

*» At all Ry, kinetic energy exhibits similar growth; oscillations about
R4 = 0.17 evolution decrease in magnitude

** Magnetic energy plots similar to 8 = 0°, 30°; except at lower
magnitude

** Predominantly spanwise behavior
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p=0 As f3 increases, the effect of £ =30°
magnetic field decreases
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** Kinetic and magnetic energies exhibit similar magnitudes at § = 0°
*»* Equi-partition potentials defined as:

o _ b
b7 k+b

b, = b,
b2 = K, + b,

Where, k, k, are total, 2-component kinetic energies, and b, b, are total, 2-component
magnetic energies

05

0.5

NG

% Oscillates about 0.5 with frequency of /R,

Equi-partition of kinetic and magnetic energies and their 2-component
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and wavevector orientation

characterizes the effect of magnetic field strength

“* As magnetic field strength increases, R, increases :
= Wave-like behavior results

“* As [ increases from 0° to 90°, R, decreases:

= [ = 0°: highest harmonic exchange, equi-partition at R, =
1.7,17

= [ = 90°: no exchange, pressure-released behavior at all
magnetic field strengths

= As [ varies from 0° to 90°, the effect of magnetic field decreases
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Thank you!
Questions?



